Аннотация к РП по физике 10-11 класс (углубленный уровень)

Аннотация к рабочей программе по физике
10-11 класс
(углубленный курс)
Рабочая программа составлена в соответствии с требованиями Федерального
государственного образовательного стандарта среднего общего образования; требованиями к
результатам освоения основной образовательной программы (личностным, метапредметным,
предметным); основными подходами к развитию и формированию универсальных учебных
действий для среднего общего образования.
Рабочая программа составлена на основе программы А.В. Шаталиной к линии УМК
Г.Я. Мякишев, Б.Б. Буховцев, Н.Н.Сотский 10-11 класс серии «Классический курс» и
рассчитана на углубленный уровень изучения физики, предназначена для классов
инженерного и физико-математического профилей, включает 330 учебных часов (170 часов
обучения в 10 классе и 165 часов обучения в 11 классе, 5 часов в неделю).
Учебно-методический комплект
 Физика. Механика. 10 кл. Профильный уровень: учеб. для общеобразовательных
учреждений / под ред. Г Я. Мякишева– М.: Дрофа, 2018.
 Физика. Молекулярная физика. Термодинамика. 10 кл. Профильный уровень: учеб. для
общеобразовательных учреждений / Г.Я. Мякишев, А.З. Синяков Дрофа, 2018.
 Физика. Электродинамика (профильный уровень) 10-11 кл. Профильный уровень: учеб.
для общеобразовательных учреждений / Г.Я. Мякишев, А.З. Синяков, Б.А. Слободсков.
Дрофа, 2018.
 Физика. Колебания и волны. 11 кл. Профильный уровень: учеб. для
общеобразовательных учреждений / Г.Я. Мякишев, А.З. Синяков. – 9-е изд., стереотип. –
М.: Дрофа, Дрофа, 2018.
 Физика. Оптика. Квантовая физика. 11 кл. Профильный уровень: учеб. для
общеобразовательных учреждений / Г.Я. Мякишев, А.З. Синяков. Дрофа, 2018
Цели и задачи данного курса:
 освоение знаний о методах научного познания природы; современной физической
картине мира: свойствах вещества и поля, пространственно-временных закономерностях,
динамических и статистических законах природы, элементарных частицах и
фундаментальных взаимодействиях, строении и эволюции Вселенной; знакомство с
основами фундаментальных физических теорий – классической механики, молекулярнокинетической теории, термодинамики, классической электродинамики, специальной
теории относительности, элементов квантовой теории;
 овладение умениями проводить наблюдения, планировать и выполнять эксперименты,
обрабатывать результаты измерений, выдвигать гипотезы и строить модели,
устанавливать границы их применимости;
 применение знаний для объяснения явлений природы, свойств вещества, принципов
работы технических устройств, решения физических задач, самостоятельного
приобретения информации физического содержания и оценки достоверности,
использования современных информационных технологий с целью поиска, переработки
и предъявления учебной и научно-популярной информации по физике;
 развитие познавательных интересов, интеллектуальных и творческих способностей в
процессе решения физических задач и самостоятельного приобретения новых знаний,
выполнения экспериментальных исследований, подготовки докладов, рефератов и

других творческих работ;
 воспитание убежденности в необходимости обосновывать высказываемую позицию,
уважительно относиться к мнению оппонента, сотрудничать в процессе совместного
выполнения задач; готовности к морально-этической оценке использования научных
достижений; уважения к творцам науки и техники, обеспечивающим ведущую роль
физики в создании современного мира техники;
 использование приобретенных знаний и умений для решения практических, жизненных
задач, рационального природопользования и охраны окружающей среды, обеспечения
безопасности жизнедеятельности человека и общества.
Учебно-тематический план 10 класс
№
1
2
3
4
5
6

Название темы
Физика как наука. Методы научного познания природы.
Механика
Молекулярная физика. Тепловые явления
Основы электродинамики
Физический практикум
Обобщающее повторение
Итого

Количество часов
4
60
40
40
10
16
170

Учебно-тематический план 11 класс
№
1
2
3
4
5
7
8

Количество часов
18
40
30
4
35
10
28
165

Тема
Основы электродинамики (продолжение)
Колебания и волны
Оптика
Элементы теории относительности
Квантовая физика
Физический практикум
Повторение
Итого:

Личностные, метапредметные и предметные результаты освоения содержания курса
Личностными результатами:
 сформированность познавательных
способностей обучающихся;

интересов,

интеллектуальных

и

творческих

 убежденность в возможности познания природы, в необходимости разумного
использования достижений науки и технологий для дальнейшего развития человеческого
общества, уважение к творцам науки и техники, отношение к физике как элементу
общечеловеческой культуры;
 самостоятельность в приобретении новых знаний и практических умений;
 готовность к выбору жизненного пути в соответствии с собственными интересами и
возможностями;
 мотивация образовательной
ориентированного подхода;

деятельности

школьников

на

основе

личностно

 формирование ценностного отношения друг к другу, учителю, авторам открытий и
изобретений, результатам обучения.
Метапредметными результатами являются:

 овладение навыками самостоятельного приобретения новых знаний, организации
учебной деятельности, постановки целей, планирования, самоконтроля и оценки
результатов своей деятельности, умениями предвидеть возможные результаты своих
действий;
 понимание различий между исходными фактами и гипотезами для их объяснения,
теоретическими моделями и реальными объектами, овладение универсальными
учебными действиями на примерах гипотез для объяснения известных фактов и
экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей
процессов или явлений;
 формирование умений воспринимать, перерабатывать и предъявлять информацию в
словесной, образной, символической формах, анализировать и перерабатывать
полученную информацию в соответствии с поставленными задачами, выделять основное
содержание прочитанного текста, находить в нем ответы на поставленные вопросы и
излагать его;
 приобретение опыта самостоятельного поиска, анализа и отбора информации с
использованием различных источников и новых информационных технологий для
решения познавательных задач;
 развитие монологической и диалогической речи, умения выражать свои мысли и
способности выслушивать собеседника, понимать его точку зрения, признавать право
другого человека на иное мнение;
 освоение приемов действий в нестандартных ситуациях, овладение эвристическими
методами решения проблем;
 формирование умений работать в группе с выполнением различных социальных ролей,
представлять и отстаивать свои взгляды и убеждения, вести дискуссию.
Планируемые предметные результаты
Выпускник на углубленном уровне научится:
 объяснять и анализировать роль и место физики в формировании современной научной
картины мира, в развитии современной техники и технологий, в практической
деятельности людей;
 характеризовать взаимосвязь между физикой и другими естественными науками;
 характеризовать системную связь между основополагающими научными понятиями:
пространство, время, материя (вещество, поле), движение, сила, энергия;
 понимать и объяснять целостность физической теории, различать границы ее
применимости и место в ряду других физических теорий;
 владеть приемами построения теоретических доказательств, а также прогнозирования
особенностей протекания физических явлений и процессов на основе полученных
теоретических выводов и доказательств;
 самостоятельно конструировать экспериментальные установки для проверки выдвинутых
гипотез, рассчитывать абсолютную и относительную погрешности;
 самостоятельно планировать и проводить физические эксперименты;
 решать практико-ориентированные качественные и расчетные физические задачи с
опорой как на известные физические законы, закономерности и модели, так и на тексты с
избыточной информацией;
 объяснять

границы применения изученных

физических

моделей

при

решении

физических и межпредметных задач;
 выдвигать гипотезы на основе знания основополагающих физических закономерностей и
законов;
 характеризовать глобальные проблемы, стоящие перед человечеством: энергетические,
сырьевые, экологические, и роль физики в решении этих проблем;
 объяснять принципы работы и характеристики изученных машин, приборов и
технических устройств;
 объяснять условия применения физических моделей при решении физических задач,
находить адекватную предложенной задаче физическую модель, разрешать проблему как
на основе имеющихся знаний, так и при помощи методов оценки.
Выпускник на углубленном уровне получит возможность научиться:
 проверять экспериментальными средствами выдвинутые гипотезы, формулируя цель
исследования, на основе знания основополагающих физических закономерностей и
законов;
 описывать и анализировать полученную в результате проведенных физических
экспериментов информацию, определять ее достоверность;
 понимать и объяснять системную связь между основополагающими научными
понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
 решать экспериментальные, качественные и количественные задачи олимпиадного
уровня сложности, используя физические законы, а также уравнения, связывающие
физические величины;
 анализировать границы применимости физических законов, понимать всеобщий
характер фундаментальных законов и ограниченность использования частных законов;
 формулировать и решать новые задачи, возникающие в ходе учебно-исследовательской и
проектной деятельности;
 усовершенствовать приборы и методы исследования в соответствии с поставленной
задачей;
 использовать методы математического моделирования, в том числе простейшие
статистические методы для обработки результатов эксперимента.
10 класс
Механические явления
Выпускник на углубленном уровне научится:
 распознавать механические явления и объяснять на основе имеющихся знаний основные
свойства или условия протекания этих явлений: равномерное и неравномерное
движение, равномерное и равноускоренное прямолинейное движение, относительность
механического движения, свободное падение тел, равномерное движение по окружности,
инерция, взаимодействие тел, реактивное движение, передача давления твердыми
телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твердых
тел, имеющих закрепленную ось вращения;
 описывать изученные свойства тел и механические явления, используя физические
величины: путь, перемещение, скорость, ускорение, период обращения, масса тела,
плотность вещества, сила (сила тяжести, сила упругости, сила трения), давление,
импульс тела, кинетическая энергия, потенциальная энергия, механическая работа,
механическая мощность, КПД при совершении работы с использованием простого

механизма, сила трения, амплитуда, период и частота колебаний, длина волны и
скорость ее распространения; при описании правильно трактовать физический смысл
используемых величин, их обозначения и единицы измерения, находить формулы,
связывающие данную физическую величину с другими величинами, вычислять значение
физической величины;
 анализировать свойства тел, механические явления и процессы, используя физические
законы: закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции
сил (нахождение равнодействующей силы), I, II и III законы Ньютона, закон сохранения
импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную
формулировку закона и его математическое выражение;
 различать основные признаки изученных физических моделей: материальная точка,
инерциальная система отсчета;
 решать задачи, используя физические законы (закон сохранения энергии, закон
всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон
сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы,
связывающие физические величины (путь, скорость, ускорение, масса тела, плотность
вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия,
механическая работа, механическая мощность, КПД простого механизма, сила трения
скольжения, коэффициент трения: на основе анализа условия задачи записывать краткое
условие, выделять физические величины, законы и формулы, необходимые для ее
решения, проводить расчеты и оценивать реальность полученного значения физической
величины.
Выпускник на углубленном уровне получит возможность научиться:
 использовать знания о механических явлениях в повседневной жизни для обеспечения
безопасности при обращении с приборами и техническими устройствами, для
сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
приводить примеры практического использования физических знаний о механических
явлениях и физических законах; примеры использования возобновляемых источников
энергии; экологических последствий исследования космического пространств;
 различать границы применимости физических законов, понимать всеобщий характер
фундаментальных законов (закон сохранения механической энергии, закон сохранения
импульса, закон всемирного тяготения) и ограниченность использования частных
законов (закон Гука, Архимеда и др.);
 находить адекватную предложенной задаче физическую модель, разрешать проблему
как на основе имеющихся знаний по механике с использованием математического
аппарата, так и при помощи методов оценки.
Тепловые явления
Выпускник на углубленном уровне научится:
 распознавать тепловые явления и объяснять на базе имеющихся знаний основные
свойства или условия протекания этих явлений: диффузия, изменение объема тел при
нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и
твердых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация,
кипение, влажность воздуха, различные способы теплопередачи (теплопроводность,
конвекция, излучение), агрегатные состояния вещества, поглощение энергии при
испарении жидкости и выделение ее при конденсации пара, зависимость температуры
кипения от давления;
 описывать изученные свойства тел и тепловые явления, используя физические

величины: количество теплоты, внутренняя энергия, температура, удельная
теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования,
удельная теплота сгорания топлива, коэффициент полезного действия теплового
двигателя; при описании правильно трактовать физический смысл используемых
величин, их обозначения и единицы измерения, находить формулы, связывающие
данную физическую величину с другими величинами, вычислять значение физической
величины;
 анализировать свойства тел, тепловые явления и процессы, используя основные
положения атомно-молекулярного учения о строении вещества и закон сохранения
энергии;
 различать основные признаки изученных физических моделей строения газов,
жидкостей и твердых тел;
 приводить примеры практического использования физических знаний о тепловых
явлениях;
 решать задачи, используя закон сохранения энергии в тепловых процессах и формулы,
связывающие физические величины (количество теплоты, температура, удельная
теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования,
удельная теплота сгорания топлива, коэффициент полезного действия теплового
двигателя): на основе анализа условия задачи записывать краткое условие, выделять
физические величины, законы и формулы, необходимые для ее решения, проводить
расчеты и оценивать реальность полученного значения физической величины.
Выпускник на углубленном уровне получит возможность научиться:
 использовать знания о тепловых явлениях в повседневной жизни для обеспечения
безопасности при обращении с приборами и техническими устройствами, для
сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
приводить примеры экологических последствий работы двигателей внутреннего
сгорания, тепловых и гидроэлектростанций;
 различать границы применимости физических законов, понимать всеобщий характер
фундаментальных физических законов (закон сохранения энергии в тепловых процессах)
и ограниченность использования частных законов;
 находить адекватную предложенной задаче физическую модель, разрешать проблему
как на основе имеющихся знаний о тепловых явлениях с использованием
математического аппарата, так и при помощи методов оценки.
Электрические и магнитные явления
Выпускник на углубленном уровне научится:
 распознавать электромагнитные явления и объяснять на основе имеющихся знаний
основные свойства или условия протекания этих явлений: электризация тел,
взаимодействие зарядов, электрический ток и его действия (тепловое, химическое,
магнитное), взаимодействие магнитов, электромагнитная индукция, действие
магнитного поля на проводник с током и на движущуюся заряженную частицу, действие
электрического поля на заряженную частицу.
 составлять схемы электрических цепей с последовательным и параллельным
соединением элементов, различая условные обозначения элементов электрических цепей
(источник тока, ключ, резистор, реостат, лампочка, амперметр, вольтметр).
 описывать изученные свойства тел и электромагнитные явления, используя физические
величины: электрический заряд, сила тока, электрическое напряжение, электрическое

сопротивление, удельное сопротивление вещества, работа электрического поля при
описании верно трактовать физический смысл используемых величин, их обозначения и
единицы измерения; находить формулы, связывающие данную физическую величину с
другими величинами.
 анализировать свойства тел, электромагнитные явления и процессы, используя
физические законы: закон сохранения электрического заряда, закон Ома для участка
цепи, закон Джоуля-Ленца; при этом различать словесную формулировку закона и его
математическое выражение.
 приводить
примеры
практического
электромагнитных явлениях

использования

физических

знаний

о

 решать задачи, используя физические законы (закон Ома для участка цепи, закон
Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света,
закон преломления света) и формулы, связывающие физические величины (сила тока,
электрическое напряжение, электрическое сопротивление, удельное сопротивление
вещества, работа электрического поля, мощность тока, формулы расчета электрического
сопротивления при последовательном и параллельном соединении проводников): на
основе анализа условия задачи записывать краткое условие, выделять физические
величины, законы и формулы, необходимые для ее решения, проводить расчеты и
оценивать реальность полученного значения физической величины.
Выпускник на углубленном уровне получит возможность научиться:
 использовать знания об электромагнитных явлениях в повседневной жизни для
обеспечения безопасности при обращении с приборами и техническими устройствами,
для сохранения здоровья и соблюдения норм экологического поведения в окружающей
среде; приводить примеры влияния электромагнитных излучений на живые организмы;
 различать границы применимости физических законов, понимать всеобщий характер
фундаментальных законов (закон сохранения электрического заряда) и ограниченность
использования частных законов (закон Ома для участка цепи, закон Джоуля-Ленца и
др.);
 использовать приемы построения физических моделей, поиска и формулировки
доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически
установленных фактов;
 находить адекватную предложенной задаче физическую модель, разрешать проблему
как на основе имеющихся знаний об электромагнитных явлениях с использованием
математического аппарата, так и при помощи методов оценки.
11 класс
Механические явления
Выпускник на углубленном уровне научится:
 распознавать механические явления и объяснять на основе имеющихся знаний основные
свойства или условия протекания этих явлений: колебательное движение, резонанс,
волновое движение (звук);
 описывать изученные свойства тел и механические явления, используя физические
величины: путь, перемещение, скорость, ускорение, период обращения, масса тела,
амплитуда, период и частота колебаний, длина волны и скорость ее распространения;
при описании правильно трактовать физический смысл используемых величин, их
обозначения и единицы измерения, находить формулы, связывающие данную
физическую величину с другими величинами, вычислять значение физической

величины;
 анализировать свойства тел, механические явления и процессы, используя физические
законы при этом различать словесную формулировку закона и его математическое
выражение;
 различать основные признаки изученных физических моделей: материальная точка,
инерциальная система отсчета;
 решать задачи, используя физические законы (и формулы, связывающие физические
величины (путь, скорость, ускорение, масса тела, , амплитуда, период и частота
колебаний, длина волны и скорость ее распространения): на основе анализа условия
задачи записывать краткое условие, выделять физические величины, законы и формулы,
необходимые для ее решения, проводить расчеты и оценивать реальность полученного
значения физической величины.
Выпускник на углубленном уровне получит возможность научиться:
 использовать знания о механических явлениях в повседневной жизни для обеспечения
безопасности при обращении с приборами и техническими устройствами, для
сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
приводить примеры практического использования физических знаний о механических
явлениях и физических законах; примеры использования возобновляемых источников
энергии; экологических последствий исследования космического пространств;
 различать границы применимости физических законов, понимать всеобщий характер
фундаментальных законов (закон сохранения механической энергии, закон сохранения
импульса, закон всемирного тяготения) и ограниченность использования частных
законов; находить адекватную предложенной задаче физическую модель, разрешать
проблему как на основе имеющихся знаний по механике с использованием
математического аппарата, так и при помощи методов оценки.
Электрические и магнитные явления
Выпускник на углубленном уровне научится:
 распознавать электромагнитные явления и объяснять на основе имеющихся знаний
основные свойства или условия протекания этих явлений: взаимодействие магнитов,
электромагнитная индукция, действие магнитного поля на проводник с током и на
движущуюся заряженную частицу, действие электрического поля на заряженную
частицу, электромагнитные волны, прямолинейное распространение света, отражение и
преломление света, дисперсия света.
 использовать оптические схемы для построения изображений в плоском зеркале и
собирающей линзе.
 описывать изученные свойства тел и электромагнитные явления, используя физические
величины: фокусное расстояние и оптическая сила линзы, скорость электромагнитных
волн, длина волны и частота света; при описании верно трактовать физический смысл
используемых величин, их обозначения и единицы измерения; находить формулы,
связывающие данную физическую величину с другими величинами.
 анализировать свойства тел, электромагнитные явления и процессы, используя
физические законы: закон прямолинейного распространения света, закон отражения
света, закон преломления света; при этом различать словесную формулировку закона и
его математическое выражение.
 приводить
примеры
практического
электромагнитных явлениях

использования

физических

знаний

о

 решать задачи, используя физические законы (закон прямолинейного распространения
света, закон отражения света, закон преломления света) и формулы, связывающие
физические величины (сила тока, электрическое напряжение, электрическое
сопротивление, удельное сопротивление вещества, работа электрического поля,
мощность тока, фокусное расстояние и оптическая сила линзы, скорость
электромагнитных волн, длина волны и частота света, формулы расчета на основе
анализа условия задачи записывать краткое условие, выделять физические величины,
законы и формулы, необходимые для ее решения, проводить расчеты и оценивать
реальность полученного значения физической величины.
Выпускник на углубленном уровне получит возможность научиться:
 использовать знания об электромагнитных явлениях в повседневной жизни для
обеспечения безопасности при обращении с приборами и техническими устройствами,
для сохранения здоровья и соблюдения норм экологического поведения в окружающей
среде; приводить примеры влияния электромагнитных излучений на живые организмы;
 различать границы применимости физических законов, понимать всеобщий характер
фундаментальных законов и ограниченность использования частных законов (;
 использовать приемы построения физических моделей, поиска и формулировки
доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически
установленных фактов;
 находить адекватную предложенной задаче физическую модель, разрешать проблему
как на основе имеющихся знаний об электромагнитных явлениях с использованием
математического аппарата, так и при помощи методов оценки.
Квантовые явления
Выпускник на углубленном уровне научится:
 распознавать квантовые явления и объяснять на основе имеющихся знаний основные
свойства или условия протекания этих явлений: естественная и искусственная
радиоактивность, α-, β- и γ-излучения, возникновение линейчатого спектра излучения
атома;
 описывать изученные квантовые явления, используя физические величины: массовое
число, зарядовое число, период полураспада, энергия фотонов; при описании правильно
трактовать физический смысл используемых величин, их обозначения и единицы
измерения; находить формулы, связывающие данную физическую величину с другими
величинами, вычислять значение физической величины;
 анализировать квантовые явления, используя физические законы и постулаты: закон
сохранения энергии, закон сохранения электрического заряда, закон сохранения
массового числа, закономерности излучения и поглощения света атомом, при этом
различать словесную формулировку закона и его математическое выражение;
 различать основные признаки планетарной модели атома, нуклонной модели атомного
ядра;
 приводить примеры проявления в природе и практического использования
радиоактивности, ядерных и термоядерных реакций, спектрального анализа.
Выпускник на углубленном уровне получит возможность научиться:
 использовать полученные знания в повседневной жизни при обращении с приборами и
техническими устройствами (счетчик ионизирующих частиц, дозиметр), для
сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

 соотносить энергию связи атомных ядер с дефектом массы;
 приводить примеры влияния радиоактивных излучений на живые организмы; понимать
принцип действия дозиметра и различать условия его использования;
 понимать экологические проблемы, возникающие при использовании атомных
электростанций, и пути решения этих проблем, перспективы использования
управляемого термоядерного синтеза.


Наверх
На сайте используются файлы cookie. Продолжая использование сайта, вы соглашаетесь на обработку своих персональных данных. Подробности об обработке ваших данных — в политике конфиденциальности.
Годовой календарный учебный график 2023-2024.docx (скачать)

Функционал «Мастер заполнения» недоступен с мобильных устройств.
Пожалуйста, воспользуйтесь персональным компьютером для редактирования информации в «Мастере заполнения».